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Abstract

This work tackles the completion of an obstacle maze by a self-
driving vehicle. We solve it combining two main ideas: First, we plan
an approximate path running Dijkstra on the environment’s Visibility
Graph. Second, a fully self-trained agent using PPO (Proximal Policy
Optimization) controls the vehicle making it follow the pre-computed
path the fastest way possible. Results show a high degree of environment
generalization achieved by training on randomized maps of increasing
difficulty (Curriculum Learning). Furthermore, our data-driven control
approach usually outperforms any of the other heuristic-based methods
attempted in both maze completion time and natural driving feel,
making us the team with lowest summed time added over all test
tracks.
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1 Introduction

Unmanned vehicles, such as self-driving cars and drones, are one of the

biggest promises of recent developments in Artificial Intelligence. These

autonomous agents could operate in open environments (cities, highways),

semi-open environments (harbors, mines), and closed environments (factories,

warehouses). Self-driving cars and trucks in open environments would decrease
transportation costs, improve safety on the roads, provide a comfortable

transportation mean to people. Unmanned vehicles in semi-open or closed

environments can increase efficiency, reduce personnel costs, and operate in

dangerous areas.

While these agents often have some knowledge of the area in which they
operate (e.g. a street map, a plant of the factory), a common, desirable
feature is flexibility: they need to adapt to changes in the surrounding
environment, and operate in unexpected situations.

Motion Planning, the task of producing a sequence of steps from the
starting point to destination satisfying the agent’s physical constraints, is
traditionally considered a central task in this kind of problems. A Motion
Plan can have several degrees of detail, from specifying only a sequence
of kinematic steps to specifying the full control output. Motion Planning
requires a full physical description of agent dynamics as well as a full description
of the environment in which the agent operates. These dynamics are often too
complex or expensive to solve analytically and approximations are necessary.
This inevitably leads to the accumulation of deviations from the planned
trajectory, and requires an on-line control to compensate for it. For large
environments or complex motion models, a motion plan can be expensive
to compute. While a full knowledge of the environment can be obtained in
closed or semi-open environments, it cannot be guaranteed in open environments
and, in any case, it does not account for changes in that environment.
Therefore, for any unexpected change along the trajectory planned by Motion
Planning, such as a new obstacle, the agent needs to re-compute the motion
plan partially or entirely. However, if the obstacle is unexpected, the agent
would probably not know its full spatial configuration and dynamics, and
the Motion Planning will be negatively affected.

In this work we completely discard the Motion Planning and approach
the problem by using an extremely simple Path Planning combined with
Deep Reinforcement Learning to learn control. Reinforcement Learning[19]
is a branch of Machine Learning that studies how to maximize the utility
of actions taken by agents when interacting with their environment. Deep
Reinforcement Learning exploits Deep Neural Networks to perform control
in complex action spaces, and has been proven to outperform humans in
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extremely complex games such as Dota2[l16], Go[!8]. Deep Reinforcement
Learning is also showing promising results in complex robotic control, such
as hand dexterity[l15] and quadrupedal locomotion[20]. The training of a

Reinforcement Learning agent consists in letting it play a large number of
episodes and learning how to act in order to maximize the utility. We show
that our agents are able to learn from experience and, most importantly, can
generalize and perform well for environments they had not seen during the
training.

1.1 Contribution

In our work, we show that agents —in this case a car and a drone in simulation—
can learn to follow a path that does not take into account their dynamics
by exploiting Deep Reinforcement Learning. This goal can be achieved with
only a model of the agent dynamics and environment. Note that in robotics
tasks such a model is almost always needed even for traditional approaches.
Our agents are able to generalize and perform well in previously unseen
environments. We eliminate the necessity of Motion Planning for driving
tasks, which is often tedious and computationally expensive, as well as that
of explicitly implementing hand-written rules for Path Following, therefore
eliminating the need of complex control systems, which are often difficult to
design and implement. Because we do not integrate agent dynamics when
computing the path, the re-planning is extremely fast and can be computed
in real time. As result, our agents are able to perform path following in a
flexible manner, avoiding collisions and handling unexpected changes in their
surroundings.

1.2 Outline

In Section 2 we give an overview of Motion Planning and Path Planning
techniques, evaluate their strengths and weaknesses and provide a rationale
behind our choice of only using Path Planning. Later, we introduce the
concept of Reinforcement Learning and its theoretical grounds. In Section 3
we propose a method for expressing the problem of robot navigation in the
Reinforcement Learning framework. We describe the learning process and
some of the techniques that can be used to speed it up. In Section 4 we
describe the evaluation environment of the agents and provide a comparison
between Reinforcement Learning control and heuristic or Motion Planning
based methods. Moreover, we also contrast our agent times against a human
player.
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2 Related work

Lot of work has been done in the field of robotics to obtain optimal paths or
Motion Plans in the most efficient way. The traditional approaches are often
based on search methods in the configuration space, and produce a Motion
Plan that partially or completely fulfills the agent constraints.

2.1 Motion Planning

Any phisical agent is constrained by its geometry and the geometry of the
environment. It is therefore useful to compute the Configuration Space
Obstacle, the set of points in the Configuration Space that induce a collision
between the agent and the environment. This can be purely geometric if the
agent only performs translations or can take into account rotations.

Together with its geometry, robot’s dynamics contribute to limit its movement.
For example, a car is limited by its steering angle, maximum acceleration and
velocity, grip, downforce, etc. Motion planning can therefore take some or
all of these physical constraints into account.

Rapidly-exploring Random Trees[12] were first proposed by Steven M.
Lavalle in 1998. RRTs can find a path from source to destination in a
continuous multi-dimensional space, and are "specifically designed to handle
nonholonomic constraints (including dynamics) and high degrees of freedom”.
They explore the Configuration Space of the agent by sampling configurations
and incorporating them if they are reachable from those in the tree. Although
RRTs find a path -if it exists- with probability 1 in the limit, it has been
proven|[10] that in a wide range of circumstances it converges almost surely to
a non-optimal solution. To overcome the limitations of the RRT algorithm,
Karaman and Frazzoli introduced RRT*[I1] in 2011. RRT* works in the
same way of RRT, but adds optimizations on the tree pushing it towards an
optimal solution with probability 1 in the limit. Despite these improvements,
RRT and RRT* have limitations: they are much more expensive than path
planning methods that do not take into account dynamics, and are not suited
for real-time changes of source and destination. Moreover, they need to be
fully aware of the environment at planning time, and for any unexpected
obstacle in the way re-planning must be triggered. If the geometry of the
obstacle is not entirely known, the quality of the plan is negatively affected.

A method that works in dynamic environments is RT-RRT* (Real-Time
RRT*)[11]. RT-RRT* is based on RRT* and Informed RRT*[5] and introduces
a tree rewiring technique that allows to move the tree root without discarding
the sampled path, as well as dynamically change the destination configuration.
RT-RTT* limitations are its high memory cost and the fact that it works only
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for bounded environments and performs poorly for large distances. In our
navigation task, however, unbounded environments and long distances must
be taken into consideration.

All the methods above do not answer all the requirements of many robotic
navigation taks. First, computing a motion plan is often expensive. Second,
the environment is often not known a priori in enough detail to produce a
motion plan. Third, even when a motion plan is available, a on-line control
is needed anyway to compensate for deviations. Moreover, a motion plan
needs to be modified on-line whenever there is an unexpected change in the
environment. For all these reasons, in our work we completely discard the
Motion Planning, and show that comparable results can be obtained from
experience with a minimal path planning and agent sensors.

2.2 Path Planning

In this context we define Path Planning as the task of producing a minimal set
of intermediate points —we call them checkpoints— that connect the starting
point to the destination. Path Planning does not take into consideration
the agent dynamics and the resulting path could be infeasible if the agent is
required to pass across the checkpoints exactly. In the first part of our work
we require this path to be collision free, but in the last part we suggest that
our approach can perform well even when this requirement is relaxed.

In the context of pure Path Planning, RRT and RRT* work in continuous
space and can be used by removing all constraints on agent dynamics. When
considering a discretized space, popular algorithms to find the shortest path
are Dijkstra’s algorithm[1] and A*[7]. Seeing grid cells as nodes in a graph
connected to their neighbors by edges weighted by the distance from their
centers, both Dijkstra and A* find the shortest path along non-occupied cells.
The bigger are the grid cells, the more the computed path diverges from the
optimal. A more efficient way of computing the Euclidean shortest path
from source to destination in the Configuration Space is using the Visibility
Graph. If corners of the obstacles are known, a visibility graph can be built
by adding edges between wisible corners, i.e. corners that are connected by
a collision-free line. In our work we perform Path Planning by applying
Dijkstra’s algorithm to the Visibility Graph.

2.3 Reinforcement Learning

Our approach is based on the recent developments in Reinforcement Learning.
Reinforcement Learning is a branch of Machine Learning that studies how
decision-based agents can maximize the utility of their actions when interacting
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with the environment. In the Reinforcement Learning framework[19], an
agent observes at time t a state s, € S, takes an action a € A(s;), receives
a reward R; from the environment and moves to a new state s;;; with
probability P(s;11|s:, a;), where S is the set of possible states and A(s) the
set of possible actions that can be taken in a state s. The agent choses actions
by following a policy = : S x A — [0,1], i.e. w(a,s) = P(als), the policy
7 induces a probability distribution over the actions for a given observed
state. Problems in Reinforcement Learning are therefore modeled as Markov
Decision Processes. The goal of Reinforcement Learning is to find a policy
that maximizes the Expected Total Return G

oo

Z ’Yth

t=0

G=FE (1)

where v € [0, 1] is called discount factor. For a given state s and a policy ,
it is defined the Value Function V (s) as

Vi(s)= Y m(a5)Q(s,a) (2)

a€A(s)

where

Q"(s,a) = Ri+7 ) P(s']s,a)V™(s) (3)

s'esS

V7™(s) is the Value Function and represents represents the Expected Total
Return G by starting in s and following the policy 7. Q7 (s, a) is the State
Action Value Function and represents the Expected Total Return by starting
in state s, taking action a, and following policy m. The goal of Reinforcement
Learning is to optimize the policy 7w in order to obtain the higher expected
reward G. If the a model of the environment is known, it is possible to
directly maximize the equations above to obtain an optimal policy. However,
when a model of the environment is not known, or the state space is too
large, other methods must be used. In our work we use Proximal Policy
Optimization[17], a state-of-the-art Policy Gradient Reinforcement Learning
algorithm for continuous control tasks. It performs gradient steps to optimize
the policy, a Neural Network to predict the value of the updates, and prevents
policy updates to fall in low-reward regions by clipping the update.
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3 Proposed method

3.1 Environment Setup

Since our path planning is straight forward and does not provide any significant
contribution we will focus on the Reinforcement Learning methodologies
implemented for vehicle control.

As explained in section 2.3, we frame the environment as a POMDP (Partially
Observable Markov Decision Process) in which we defined a state, action and
reward system (transition probabilities are given by the simulation). There
exist multiple valid ways to build the state-action-reward space, nevertheless
after some testing we opted by defining it as follows for both the car and the
drone examples:

State: The partial observation of the environment by the agent is through
the state vector. This means the state vector is the input which the policy
function will map into action probability distribution. In our case the state
is composed by the concatenation of the following elements:

e Next n checkpoints relative position: For the agent to learn what
direction to go it is essential that it knows where the next n checkpoints
are located w.r.t. itself. Latest trained models use n = 4. In order to
efficiently drive through the maze it is critical to not only know the
next checkpoint but also be able to anticipate and adapt the trajectory
considering future movements. Working in relative coordinates (as
opposed to absolute world coordinates) significantly eased the model
training and generalization.

e Relative velocity: To capture the current dynamic state of the vehicle,
the agent needs to know its velocity, both in the forward direction and
in the lateral —to understand when its drifting.

e ”"Lidar”: These values represent the distance to closest obstacles for
fixed directions in vehicle frame, simulating a lidar sensor without noise.
Our tests 3.2 show that an agent aware of its obstacle surroundings
outperforms a blind one. Latest trained model for the car uses 12 rays
(9 in front and 3 in the back). Similarly, we used 24 rays evenly spaced
for the drone.

e Drone max acceleration: In the case of the drone we are also
appending its maximum acceleration to its state, since it was halved
after every crash.



DD2438 O. Canal, F. Taschin

Actions We did several tests between discrete and continuous actions 3.2,
obtaining the best results using a 2-branch continuous action space for both
the car and the drone. This can be understood as a classification learning
problem (discrete action space) versus a regression one (continuous action
space). 2-branch means that 2 set of actions are independent of each other,
for example the steering and the throttle.

In the case of the car we picked the following actions:

e Throttle: Continuous value between -1 and 1. 1 translates into going
forward at full speed and -1 braking or going backwards.

e Steering: Continuous value between -1 and 1 where -1 is turning left
and 1 turning right.

Similarly, for the done we defined the 2 actions branches as:

e Move in x axis: Continuous value between -1 and 1. 1 translates into
full acceleration in the positive x direction and -1 in the negative.

e Move in z axis: Continuous value between -1 and 1, analogously
defined as before with axis z instead.

Rewards It is often very tempting to over-engineer the reward system and
introduce some heuristics to ease the training process. Instead, we tried to
perform the minimal tuning that guaranteed a successful learning. For this,
we introduced the following feedback signals:

e Reaching checkpoint: Latest trained models reward the agent with 1
point for passing through one of the checkpoints in its state checkpoint
window. If it passed through a checkpoint more advance than the
closest one, the reward also adds the sum of checkpoints in between.
This is to enhance the agent to find optimal trajectories between checkpoint
windows.

e Time To guarantee that the agent learns to complete tracks as fast as
possible we also add a negative reward for each time-step the agent is
running in a given environment.

e Wall collision: We add a minimal penalty (-3 for the car, -0.1 for the
drone) for crashing against an obstacle. Experiments 3.2 showed that
appending this reward made it easier for the agent to learn how to read
the ”lidar” data. Nevertheless, it is not essential for the policy learning
and might even harm in some situations as maybe crashing with the
car may result in a lower overall time.
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3.2 Learning process

As the main idea of the project is to create an agent capable of generalizing
to unseen environments, we implemented a random map generation routine
on which to train. Early stages of the project showed that attempting to
always train in the same map led into a good performance on that map
but a clear overfitting problem. Moreover, experiment results 4 clearly show
the benefits of applying a curriculum learning [I] approach. This is: start
the training in easy environments and once the agent has mastered it, rise
the environment difficulty sequentially. It has been shown [1] to fasten and
improve the learning process. In our case, we control the difficulty of the
maps using two variables: The proportion of terrain occupied by obstacles
and, for the car only, the initial orientation. In early stages of the training,
maps have few obstacles and agent starts facing the optimal orientation to
complete the track, while final stages are characterized by high number of
obstacles and random initial orientations.

Other attempted learning methodologies include Behavior Cloning (BC)
[6] and Generative Adversarial Imitation Learning (GAIL) [8]. They both
involve human demonstrations on how to behave given a certain state. For
this, we recorded over two hours of human demonstrations on randomly
generated maps for different state definitions and map difficulties. We did
this by manually solving the mazes and recording the sequence of state-
actions. Results show a benefit of using both strategies specially when no
"lidar” data is included in the state information. Nevertheless, we opted by
not using it in the last model as a fully self-trained model already presented
a very good performance.

It is important to notice that the assessment of the impact of different
state definition, learning techniques and learning meta-parameters is a high
time consuming job. Consider that not only a single training on a regular
machine takes around eight hours to give decent results, but also the effect
of each parameter is tuned blindly. To cope with that kind of constrains we
had to continuously run tests changing state definition and parameters in an
efficient way. For this, we made use of the fractional factorial experiment
design [13] running multiple training instances in different machines to later
assess the effect of each variable in our case. In particular, aside from our
two laptops we had two servers training models without interruption during
the least two weeks.
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3.3 Implementation

The implementation was done in Unity in combination with the open-source
toolkit ML-Agents [9]. This framework allows to convert the world coded
into Unity as a GYM [2] environment. This enables the use of already
implemented Reinforcement Learning algorithms with Python such as the
ones by OpenAl baselines [3]. In our case, we had to adapt the vehicle Al
controller code to work as an ML-Agents agent. After that, we could build
the Unity project and use that executable as an environment from where to
take samples to train the algorithm.

4 Experimental results

We tested our system in a competition against other teams on three known
and two unknown maps at the time of the development. It is important to
remark that our agents had never seen any of the evaluation maps during
training period as we intended to show its generalization ability.

Results show a better performance than most of the other teams as seen in
table 1.

CAR MODEL DRONE MODEL

TerrainA TerrainB TerrainC Terrain D Terrain E TerrainA  TerrainB TerrainC Terrain D Terrain E
G1
G2
G3
G4
G5B
GB
GT

G1
G2
G3
G4
G5
G6
G7

G8 Car time G8

G9 Car time G9

G10 G10

G11 Note: W G11

G1z2 G12

G13 Car time G13

G14 G14

G15 G15

G16 G16

Best time 26.9 49.42 6.2 22.2 20.2 Best time 28.2 55 7.16 28.49 29.8
Best Group G8 Gl11 G4 Gl11 G4 Best Group Gl11 G111 G13 G13 Gl11

Figure 1: Final times for maps A, B, C, D, E up to date on 11th Feb. 2020,
22:20. Our group is G11
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4.1 Experimental setup

The car was tested on the five maps of Figure 2. Maps A, B, and C were
known from the beginning and have been useful for the firsts evaluations of
the agents (validation set). Maps D and E were unknown to the agent for the
whole training (test set). These maps contained a wide variety of features
such as straight lines, narrow corridors, tight curves, and complex shapes.

Figure 2: From left to right, maps A, B, C, D, E

4.2 Analysis of Outcome

By visually comparing the vehicle driving style against the other proposed
heuristic techniques we can see a more "natural” feel to it. Figure 3 shows an
example of driving path performed by the car and the drone. It is interesting
to observe how the agents do not pass over all the checkpoints, but learned
to skip them when not necessary. We regard this behavior as an important
example of how Motion Planning can be learned on top of the Path Planning,
without the need of explicitly program it. While other approaches present
a string feel in its steering style, our learned method resembles that one
of a human, only steering when taking a turn or intending to gain control.
Furthermore, our agent is capable of dealing with unexpected situations in
real time as is able to perceive its surroundings using the ”lidar” information.
Nevertheless, it still struggles when crashing or having to start or recover
from bad orientations. We believe that with further training and parameter
tuning this could be easily overcame.

Some other interesting behaviours observed involve: break before taking a
turn or break when going too fast to react in case of obstacle. However, both
car and drone still present important limitations. In the case of the car, in an
attempt to complete the maze too fast it sometimes ” jumps” key checkpoints
so that it becomes trapped in a situation from which it does not know how
to go back to main track. It is clear that it understands its environment
but it still hasn’t trained enough to know how to explore to discover an
exit. Another possible improvement for the trap problem could be given by
exploiting a Long-Short Term Memory (LSTM) network for the agent policy.
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Figure 3: Paths performed by car and drone respectively. Green represents
acceleration, red braking. Pink circles are checkpoints computed by Path
Planning.

This would allow the agent to "remember” the obstacle structures and make
it easier to find a way out. We believe that the use of a LSTM network would
generally improve the performances of the agents or allow a reduction of the
number of ”lidar” points. However, it would probably make the learning
slower. In the case of the drone, the main drawback we are facing is the
fact that after a crash its maximum acceleration gets decreased. During the
training process, crashing does not happen often and the agent is not used
to the control change, making it perform worse after a crash. Moreover, this
increases the probability of another crash which worsens the situation. We
believe that further training would help solvent the situation.

In order to understand how our agents perform with respect to a human
player, we played both the drone and the car in all the maps and keep our best
time. Results can be seen in Table 1. It has to be noted that a human player
has a great advantage: while the agents can see only the next 4 checkpoints
and the lidar measurements, a human player can see the whole video frame
and the minimap. Despite this advantage, our drone agent performance is
comparable to a human. The car agent is, however, slower than a human in
all maps.

5 Conclusions and further improvements

In this work we prove the effectiveness of Reinforcement Learning in continuous
control tasks. We propose a training method that allows a dynamically



DD2438 O. Canal, F. Taschin

H Map Human Drone Agent Drone Human Car Agent Car H

A 31.4 28.2 17.7 27.56
B DNF* 55 47.5 49.42
C 6.6 7.34 5.67 6.45
D 25.1 31.6 17.3 22.2
E 29.3 29.8 16.8 22.97

Table 1: Respectively: drone times for human player and agent, car times
for human player and agent. *In map B the human player with the drone
Did Not Finish the track in the maximum limit of 60 seconds.

constrained agent to perform effective control without needing a motion plan.
Compared to other solutions, summed up in figure 1, our approach performs
better overall. Moreover, despite not having been trained for this specific
purpose, our agents are capable of avoiding obstacles that were unknown
when the path plan was computed. The control is however not always
perfect leading to some crash episodes in the drone, whose dynamics are
more complex. Both agents suffer from the "trap” issue: when an unexpected
obstacle is too large they remain stuck in indecision. This suggests the use of
a LSTM network instead of the current Multi Layer Perceptron, in order to
give the agent a "memory” that could allow it to overcome this situations. A
crucial issue in the proposed method is the difficulty of tuning, since trainer
and environment hyperparameters are high in number, and trainings are
slow.
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